Asymptotic analysis of the Poisson-Boltzmann equation describing electrokinetics in porous media∗

نویسندگان

  • Grégoire Allaire
  • Jean-François Dufrêche
  • Andro Mikelić
  • Andrey Piatnitski
چکیده

We consider the Poisson-Boltzmann equation in a periodic cell, representative of a porous medium. It is a model for the electrostatic distribution of N chemical species diluted in a liquid at rest, occupying the pore space with charged solid boundaries. We study the asymptotic behavior of its solution depending on a parameter β which is the square of the ratio between a characteristic pore length and the Debye length. For small β we identify the limit problem which is still a nonlinear Poisson equation involving only one species with maximal valence, opposite to the average of the given surface charge density. This result justifies the Donnan effect, observing that the ions for which the charge is the one of the solid phase are expelled from the pores. For large β we prove that the solution behaves like a boundary layer near the pore walls and is constant far away in the bulk. Our analysis is valid for Neumann boundary conditions (namely for imposed surface charge densities) and establishes rigorously that solid interfaces are uncoupled from the bulk fluid, so that the simplified additive theories, such as the one of the popular Derjaguin, Landau, Verwey and Overbeek (DLVO) approach, can be used. We show that the asymptotic behavior is completely different in the case of Dirichlet boundary conditions (namely for imposed surface potential).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures

In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

An experimental study on hydraulic behavior of free-surface radial flow in coarse-grained porous media

The equations of fluids in porous media are very useful in designing the rockfill and diversion dams, gabions, breakwaters and ground water reserves. Researches have been showed that the Forchheimer equation is not sufficient for the analysis of hydraulic behavior of free-surface radial flows; because, in these flows, in addition to the hydraulic gradient and velocity, the variable of radius is...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

Lattice Poisson-Boltzmann Simulations of Electroosmotic Flows in Charged Anisotropic Porous Media

This paper presents numerical analysis of electroosmotic flows (EOF) in charged anisotropic porousmedia using the lattice Poisson-Boltzmannmethod (LPBM), which combines two sets of lattice evolution methods solving the nonlinear Poisson equation for electric potential distribution and the Navier-Stokes equations for fluid flow respectively. Consistent boundary condition implementations are prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012